اکتشاف معادن آهن با بهره گیری از رفتار مغناطیسی و تخمینگر شبکه عصبی مصنوعی حاصل همکاری مشترک محققان دانشگاه صنعتی امیرکبیر و روسیه است.
به گزارش خبرگزاری مهر به نقل از دانشگاه صنعتی امیرکبیر، مجله «مینرالز» از انتشارات MDPI مقالهای علمی درباره تحقیقات مشترک دانشمندان دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) و دانشگاه پلی تکنیک تومسک در زمینه اکتشاف معادن و زمین شناسی منتشر کرد. عنوان این مقاله Investigation of Magneto-/Radio-Metric Behavior in Order to Identify an Estimator Model Using K-Means Clustering and Artificial Neural Network (ANN) (Iron Ore Deposit, Yazd, IRAN)) است.
این محققان بر روشی نوآورانه مبتنی بر هوش مصنوعی برای تبدیل داده های رادیومتری و مغناطیسی در یک کانسار آهن تمرکز کردند که امکان ارزیابی زمین شناسی منطقه ای از توزیع مواد معدنی را فراهم می کند. این پژوهش حاصل تحقیقات دکتر عادل شیرازی و دکتر عارف شیرازی در مقطع فوق دکتری دانشگاه صنعتی امیرکبیر است که با نظارت پروفسور اردشیر هزارخانی استاد تمام این دانشگاه و همکاری اعضای هیئت علمی دانشگاه پلی تکنیک تومسک انجام شده است.
این مطالعه در منطقه ای در نزدیکی روستای توت در استان یزد ایران بوده است. این منطقه به دلیل دسترسی به داده های اکتشافی و زیرساخت های توسعه یافته انتخاب شد.
افزایش رادیواکتیویته در سایتهای سنگ آهن در ایران ایده انجام مطالعات رادیومتریک و مغناطیس سنجی را به وجود آورد. بر اساس مشاهدات زمین شناسی، وجود ناهنجاری های مغناطیسی می تواند رابطه پیچیده ای با رادیواکتیویته شدید عناصر مختلف داشته باشد.
نتایج تحقیقات مشترک دانشمندان ایرانی و روسی نشان می دهد که بر اساس رفتار مغناطیسی در منطقه ی توت و بهره گیری از شبکه عصبی مصنوعی، می توان میزان رادیواکتیویته معادن آهن را برآورد کرد. نتیجه این تحقیقات در ژورنال بین المللی مینرالز منتشر شد.
محققان در این پژوهش داده های میدانی مربوط به زمین شناسی و ژئوفیزیک (رادیومتری و مغناطیس سنجی) را تجزیه و تحلیل کردند و برآوردهایی در خصوص ذخایر جدید این محدوده معدنی معرفی کردند.
دکتر شیرازی توضیح می دهد که طبق مشاهدات زمین شناسی و برداشت های ژئوفیزیکی، وجود ناهنجاری های مغناطیسی می تواند رابطه پیچیده ای با رادیواکتیویته شدید عناصر مختلف داشته باشد.
این محققان با استفاده از روش خوشهبندی K-means، رفتار دو متغیر قدرت میدان مغناطیسی و رادیواکتیویته را مورد مطالعه قرار دادند و یک رابطه ریاضی برای تحلیل رفتار این دو متغیر نسبت به یکدیگر ارائه کردند. علاوه بر این، الگوی رفتار مغناطیسی در منطقه که شامل افزایش و سپس کاهش شدت میدان مغناطیسی زمین نسبت به شدت رادیواکتیویته بود نشان داد که امکان تعمیم نتایج مطالعات مغناطیس سنجی بدون تکرار رادیومتری در این ناحیه و مناطق مجاور وجود دارد.
برای ارزیابی داده های به دست آمده، دانشمندان از یک شبکه عصبی مصنوعی استفاده کردند که عملکرد مغز انسان را شبیه سازی می کند که امروزه یکی از پیشرفته ترین روش ها در پیش بینی و تحلیل داده های اکتشافی است.
دادههای حاصل از برداشت های ژئوفیزیکی و ژئوشیمیایی منطقه و دادههای دیجیتال بسیار حجیم هستند و ارزیابی، تفسیر و تبدیل آنها هزینه محاسباتی بالایی دارد، در حالی که تجزیه و تحلیل با این روش علاوه بر دقت بالای نتایج، سرعت عملکرد را نیز بالا برده است.
شیرازی در این باره گفت: این موضوع ما را بر آن داشت تا با استفاده از آمارهای ریاضی و روشهای مبتنی بر تحلیل شبکه عصبی دادههای چند بعدی را تفسیر کنیم. در این پژوهش، شبکهی عصبی بهعنوان ابزاری مهم تخمین و یادگیری ماشین برای پردازش سریع دادههای بزرگ و تفسیر سریع آنها و پیشبینی اطلاعات مورد استفاده قرار گرفت.
تخمین مشابهی برای سایر داده ها مثل تبدیل داده های مغناطیسی به داده های گرانی سنجی استفاده شده است. بنابراین، معیارهای ارزیابی جدید این پژوهش، امکان پیش بینی داده های رادیومتری بر مبنای داده های مغناطیس سنجی و بالعکس را باز می کند.
به گفته نویسندگان مقاله؛ نتایج تحقیقات به دست آمده می تواند در فرآیند اکتشافات معدنی و پیش بینی و شناسایی ذخایر معدنی جدید مورد استفاده قرار گیرد. همچنین این نتایج میتواند راهگشای سازمان زمین شناسی و اکتشافات معدنی کشور ایران برای شناسایی مناطق دارای پرتوزایی با استفاده از داده های مغناطیسی در منطقه باشد.
نتایج این طرح پژوهشی توسط شرکت دانش بنیان دیده بان کسب و کار صفرتاصد تجاری سازی شده است.